题目内容
【题目】如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,
(1)若∠AOE=40°,求∠BOD的度数;
(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)
(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?
【答案】(1)20°;(2)α;(3)∠AOE=2∠BOD.
【解析】试题分析:(1)、(2)根据平角的性质求得∠AOF,又有角平分线的性质求得∠FOC;然后根据对顶角相等求得∠EOD=∠FOC;∠BOE=∠AOB﹣∠AOE,∠BOD=∠EOD﹣∠BOE;
(3)由(1)、(2)的结果找出它们之间的倍数关系.
试题解析:(1)∵∠AOE+∠AOF=180°(互为补角),∠AOE=40°,
∴∠AOF=140°;
又∵OC平分∠AOF,
∴∠FOC=∠AOF=70°,
∴∠EOD=∠FOC=70°(对顶角相等);
而∠BOE=∠AOB﹣∠AOE=50°,
∴∠BOD=∠EOD﹣∠BOE=20°;
(2)∵∠AOE+∠AOF=180°(互为补角),∠AOE=α,
∴∠AOF=180°﹣α;
又∵OC平分∠AOF,
∴∠FOC=∠AOF=90°﹣α,
∴∠EOD=∠FOC=90°﹣α(对顶角相等);
而∠BOE=∠AOB﹣∠AOE=90°﹣α,
∴∠BOD=∠EOD﹣∠BOE=α;
(3)从(1)(2)的结果中能看出∠AOE=2∠BOD.
练习册系列答案
相关题目