题目内容

【题目】如图,在△ABC中,已知AB=BC,∠B=120°,AB的垂直平分线交AC于点D,若AC=6,求AD的长.

【答案】解:连接BD,
∵AB=BC,∠ABC=120°,
∴∠A=∠C= (180°﹣∠ABC)=30°,
∴DC=2BD,
∵AB的垂直平分线是DE,
∴AD=BD,
∴DC=2AD,
∵AC=6,
∴AD= ×6=2
【解析】连接BD,根据三角形的内角和定理和等腰三角形性质推出∠C=30°,根据含30°角的直角三角形性质得出DC=2BD,根据线段垂直平分线的性质推出AD=BD,即可求出答案.
【考点精析】通过灵活运用线段垂直平分线的性质和含30度角的直角三角形,掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网