题目内容
【题目】如图所示,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.
(1)求证:四边形EFDG是菱形;
(2)求证:EG2=GF×AF;
(3)若,折痕AF=5cm,则矩形ABCD的周长为 .
【答案】(1)证明见解析;(2)证明见解析;(3)36cm.
【解析】试题分析:(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF。
(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FOAF,于是可得到GE、AF、FG的数量关系.
(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD-GH求解即可.
试题解析:
(1)证明:如图所示,
∵EG∥CD, ∴∠EGF=∠DFG.
∵由折叠的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,
∴∠DGF=∠DFG. ∴GD=DF.
∴GD=GE=DF=EF,∴四边形EFDG为菱形;
(2)证明:如图所示,连接DE,交AF于点O.
∵四边形EFDG为菱形, ∴GF⊥DE,OG=OF=GF.
∵∠DOF=∠ADF=90°,∠OFD=∠DFA, ∴△DOF∽△ADF.
∴,即DF2=OFAF.
∵OF=GF,DF=EG, ∴EG2=GFAF ;
(3)矩形ABCD的周长为36 cm.
练习册系列答案
相关题目