题目内容
【题目】如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1)(1,1),(1,2),(2,2)……根据这个规律,第2019个点的坐标为________
【答案】(45,6)
【解析】
根据点的坐标的变化可得出“第(2n-1)2个点的坐标为(2n-1,0)(n为正整数)”,依此规律可得出第2025个点的坐标为(45,0),再结合第2019个点在第2025个点的上方6个单位长度处,即可求出第2019个点的坐标,此题得解.
观察图形,可知:第1个点的坐标为(1,0),第4个点的坐标为(1,1),第9个点的坐标为(3,0),第16个点的坐标为(1,3),…,
∴第(2n-1)2个点的坐标为(2n-1,0)(n为正整数).
∵2025=452,
∴第2025个点的坐标为(45,0).
又∵2025-6=2019,
∴第2019个点在第2025个点的上方6个单位长度处,
∴第2019个点的坐标为(45,6).
故答案为:(45,6).
练习册系列答案
相关题目
【题目】“六一”前夕,某玩具经销商用去2350元购进A、B、C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如表所示
型 号 | A | B | C |
进价(元/套) | 40 | 55 | 50 |
售价(元/套) | 50 | 80 | 65 |
(1)用含x、y的代数式表示购进C种玩具的套数;
(2)求y与x之间的函数关系式;
(3)假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元.
①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时三种玩具各多少套.