题目内容
【题目】如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.
(1)求抛物线的解析式及点C的坐标;
(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;
(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.
①若△AOC与△BMN相似,请直接写出t的值;
②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
【答案】(1)y=﹣x2+2x+3,C点坐标为(0,3);(2)F(2,1);(3)①t=1;②当t或秒时,△BOQ为等腰三角形
【解析】
(1)将A、B关坐标代入y=﹣x2+bx+c中,即可求解;
(2)确定直线BC的解析式为y=﹣x+3,根据点E、F关于直线x=1对称,即可求解;
(3)①△AOC与△BMN相似,则,即可求解;②分OQ=BQ、BO=BQ、OQ=OB三种情况,分别求解即可.
解:(1))∵点A、B关于直线x=1对称,AB=4,
∴A(﹣1,0),B(3,0),
代入y=﹣x2+bx+c中,得:,解得,
∴抛物线的解析式为y=﹣x2+2x+3,
∴C点坐标为(0,3);
(2)设直线BC的解析式为y=mx+n,
则有:,解得,
∴直线BC的解析式为y=﹣x+3,
∵点E、F关于直线x=1对称,
又E到对称轴的距离为1,
∴EF=2,
∴F点的横坐标为2,将x=2代入y=﹣x+3中,
得:y=﹣2+3=1,
∴F(2,1);
(3)①如下图,连接BC交MN于Q,
MN=﹣4t2+4t+3,MB=3﹣2t,
△AOC与△BMN相似,则,
即:,
解得:t或或1(舍去、),
故:t=1;
②∵M(2t,0),MN⊥x轴,∴Q(2t,3﹣2t),
∵△BOQ为等腰三角形,∴分三种情况讨论,
第一种,当OQ=BQ时,
∵QM⊥OB
∴OM=MB
∴2t=3﹣2t
∴t;
第二种,当BO=BQ时,在Rt△BMQ中
∵∠OBQ=45°,
∴BQ,
∴BO,
即3,
∴t;
第三种,当OQ=OB时,
则点Q、C重合,此时t=0
而t>0,故不符合题意
综上述,当t或秒时,△BOQ为等腰三角形.