题目内容
【题目】草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.
(1)求y与x的函数解析式;
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.
【答案】(1)y=-2x+340(20≤x≤40)(2)当x=40时,W最大,最大值为5200元
【解析】试题分析:(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.
试题解析:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,
解得:, ∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).
(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,
∵﹣2<0, ∴当x≤95时,W随x的增大而增大, ∵20≤x≤40,
∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.
练习册系列答案
相关题目