ÌâÄ¿ÄÚÈÝ
Èçͼ£¬°ÑÅ×ÎïÏßy=-x2£¨ÐéÏß²¿·Ö£©ÏòÓÒƽÒÆ1¸öµ¥Î»³¤¶È£¬ÔÙÏòÉÏƽÒÆ1¸öµ¥Î»³¤¶È£¬µÃ³öÅ×ÎïÏßl1£¬Å×ÎïÏßl2ÓëÅ×ÎïÏßl1¹ØÓÚyÖá¶Ô³Æ£®µãA£¬O£¬B·Ö±ðÊÇÅ×ÎïÏßl1£¬l2ÓëxÖáµÄ½»µã£¬D£¬C·Ö±ðÊÇÅ×ÎïÏßl1£¬l2µÄ¶¥µã£¬Ï߶ÎCD½»yÖáÓÚµãE£®£¨1£©·Ö±ðд³öÅ×ÎïÏßl1Óël2µÄ½âÎöʽ£»
£¨2£©ÉèPʹÅ×ÎïÏßl1ÉÏÓëD£¬OÁ½µã²»ÖغϵÄÈÎÒâÒ»µã£¬QµãÊÇPµã¹ØÓÚyÖáµÄ¶Ô³Æµã£¬ÊÔÅжÏÒÔP£¬Q£¬C£¬DΪ¶¥µãµÄËıßÐÎÊÇʲôÌØÊâµÄËıßÐΣ¿Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÔÚÅ×ÎïÏßl1ÉÏÊÇ·ñ´æÔÚµãM£¬Ê¹µÃS¡÷ABM=SËıßÐÎAOED£¿Èç¹û´æÔÚ£¬Çó³öMµãµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾Ý¶þ´Îº¯ÊýͼÏó¡°×ó¼ÓÓÒ¼õ£¬ÉϼÓϼõ¡±µÄƽÒƹæÂɼ´¿ÉµÃµ½l1µÄ½âÎöʽ£»
ÓÉÓÚl1¡¢l2¹ØÓÚyÖá¶Ô³Æ£¬ÄÇËüÃǵĶ¥µã×ø±ê¹ØÓÚyÖá¶Ô³Æ£¬¶ø¿ª¿Ú´óС¡¢¿ª¿Ú·½Ïò¡¢ÓëyÖáµÄ½»µã¶¼Ïàͬ£¬¾Ý´Ë¿ÉÇó³öl2µÄ½âÎöʽ£»
£¨2£©¸ù¾ÝÖá¶Ô³ÆµÄÐÔÖÊ£¬ºÜÃ÷ÏԵĿÉÒÔ¿´³öËıßÐÎPQCDÊǵÈÑüÌÝÐΣ»ÈôPΪl1µÄ¶Ô³ÆÖáÓëÅ×ÎïÏßl2µÄ½»µãʱ£¬PQ=CD£¬´ËʱËıßÐÎPQCDÊǾØÐΣ»
£¨3£©¸ù¾ÝÅ×ÎïÏßl1µÄ½âÎöʽ£¬¿ÉÇó³öA¡¢D¡¢EµÄ×ø±ê£¬½ø¶ø¿ÉÇóµÃÌÝÐÎAOEDµÄÃæ»ý£¬¼´¿ÉµÃµ½¡÷ABMµÄÃæ»ý£¬ÓÉÓÚABÊǶ¨³¤£¬ÄÇô¸ù¾Ý¡÷ABMµÄÃæ»ý¼´¿ÉÇó³öMµã×Ý×ø±êµÄ¾ø¶ÔÖµ£¬½«Æä´úÈëÅ×ÎïÏßl1µÄ½âÎöʽÖУ¬¼´¿ÉÇóµÃMµãµÄ×ø±ê£®
ÓÉÓÚl1¡¢l2¹ØÓÚyÖá¶Ô³Æ£¬ÄÇËüÃǵĶ¥µã×ø±ê¹ØÓÚyÖá¶Ô³Æ£¬¶ø¿ª¿Ú´óС¡¢¿ª¿Ú·½Ïò¡¢ÓëyÖáµÄ½»µã¶¼Ïàͬ£¬¾Ý´Ë¿ÉÇó³öl2µÄ½âÎöʽ£»
£¨2£©¸ù¾ÝÖá¶Ô³ÆµÄÐÔÖÊ£¬ºÜÃ÷ÏԵĿÉÒÔ¿´³öËıßÐÎPQCDÊǵÈÑüÌÝÐΣ»ÈôPΪl1µÄ¶Ô³ÆÖáÓëÅ×ÎïÏßl2µÄ½»µãʱ£¬PQ=CD£¬´ËʱËıßÐÎPQCDÊǾØÐΣ»
£¨3£©¸ù¾ÝÅ×ÎïÏßl1µÄ½âÎöʽ£¬¿ÉÇó³öA¡¢D¡¢EµÄ×ø±ê£¬½ø¶ø¿ÉÇóµÃÌÝÐÎAOEDµÄÃæ»ý£¬¼´¿ÉµÃµ½¡÷ABMµÄÃæ»ý£¬ÓÉÓÚABÊǶ¨³¤£¬ÄÇô¸ù¾Ý¡÷ABMµÄÃæ»ý¼´¿ÉÇó³öMµã×Ý×ø±êµÄ¾ø¶ÔÖµ£¬½«Æä´úÈëÅ×ÎïÏßl1µÄ½âÎöʽÖУ¬¼´¿ÉÇóµÃMµãµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©l1£ºy=-£¨x-1£©2+1£¨»òy=-x2+2x£©£¬£¨1·Ö£©
l2£ºy=-£¨x+1£©2+1£¨»òy=-x2-2x£©£»£¨2·Ö£©
£¨2£©ÒÔP£¬Q£¬C£¬DΪ¶¥µãµÄËıßÐÎΪ¾ØÐλòµÈÑüÌÝÐΣ¬£¨3·Ö£©
ÀíÓÉ£º¡ßµãCÓëµãD£¬µãPÓëµãQ¹ØÓÚyÖá¶Ô³Æ£¬
¡àCD¡ÎPQ¡ÎxÖᣮ
¢Ùµ±PµãÊÇl2µÄ¶Ô³ÆÖáÓël1µÄ½»µãʱ£¬µãP£¬QµÄ×ø±ê·Ö±ðΪ£¨-1£¬-3£©ºÍ£¨1£¬-3£©£¬¶øµãC£¬DµÄ×ø±ê·Ö±ðΪ£¨-1£¬1£©ºÍ£¨1£¬1£©£¬
ËùÒÔ£¬CD=PQ£¬CP¡ÍCD£¬ËıßÐÎCPQDÊǾØÐΣ»£¨4·Ö£©
¢Úµ±Pµã²»ÊÇl2µÄ¶Ô³ÆÖáÓël1µÄ½»µãʱ£¬¸ù¾ÝÖá¶Ô³ÆÐÔÖÊ£¬
ÓУºCP=DQ£¨»òCQ=DPS£©£¬µ«CD¡ÙPQ£¬
¡àËıßÐÎCPQD£¨ËıßÐÎCQPD£©ÊǵÈÑüÌÝÐΣ®£¨5·Ö£©
£¨3£©´æÔÚ£¬ÉèÂú×ãÌõ¼þµÄMµã×ø±êΪ£¨x£¬y£©£¬Á¬½ÓMA£¬MB£¬AD£¬ÒÀÌâÒâµÃ£º
A£¨2£¬0£©£¬B£¨-2£¬0£©£¬E£¨0£¬1£©£¬
SÌÝÐÎAOED=
=
£¬£¨6·Ö£©
¢Ùµ±y£¾0ʱ£¬S¡÷ABM=
¡Á4¡Áy=
¡ày=
£¬£¨7·Ö£©
½«y=
´úÈël1µÄ½âÎöʽ£¬½âµÃ£ºx1=
£¬x2=
£¬
¡àM1(
£¬
)£¬M2(
£¬
)£¬£¨8·Ö£©
¢Úµ±y£¼0ʱ£¬S¡÷ABM=
¡Á4¡Á(-y)=
¡ày=-
£¬£¨9·Ö£©
½«y=-
´úÈël1µÄ½âÎöʽ£¬½âµÃx=1¡À
£¬
¡àM3(
£¬-
)£¬M4(
£¬-
)£® £¨10·Ö£©
l2£ºy=-£¨x+1£©2+1£¨»òy=-x2-2x£©£»£¨2·Ö£©
£¨2£©ÒÔP£¬Q£¬C£¬DΪ¶¥µãµÄËıßÐÎΪ¾ØÐλòµÈÑüÌÝÐΣ¬£¨3·Ö£©
ÀíÓÉ£º¡ßµãCÓëµãD£¬µãPÓëµãQ¹ØÓÚyÖá¶Ô³Æ£¬
¡àCD¡ÎPQ¡ÎxÖᣮ
¢Ùµ±PµãÊÇl2µÄ¶Ô³ÆÖáÓël1µÄ½»µãʱ£¬µãP£¬QµÄ×ø±ê·Ö±ðΪ£¨-1£¬-3£©ºÍ£¨1£¬-3£©£¬¶øµãC£¬DµÄ×ø±ê·Ö±ðΪ£¨-1£¬1£©ºÍ£¨1£¬1£©£¬
ËùÒÔ£¬CD=PQ£¬CP¡ÍCD£¬ËıßÐÎCPQDÊǾØÐΣ»£¨4·Ö£©
¢Úµ±Pµã²»ÊÇl2µÄ¶Ô³ÆÖáÓël1µÄ½»µãʱ£¬¸ù¾ÝÖá¶Ô³ÆÐÔÖÊ£¬
ÓУºCP=DQ£¨»òCQ=DPS£©£¬µ«CD¡ÙPQ£¬
¡àËıßÐÎCPQD£¨ËıßÐÎCQPD£©ÊǵÈÑüÌÝÐΣ®£¨5·Ö£©
£¨3£©´æÔÚ£¬ÉèÂú×ãÌõ¼þµÄMµã×ø±êΪ£¨x£¬y£©£¬Á¬½ÓMA£¬MB£¬AD£¬ÒÀÌâÒâµÃ£º
A£¨2£¬0£©£¬B£¨-2£¬0£©£¬E£¨0£¬1£©£¬
SÌÝÐÎAOED=
(1+2)¡Á1 |
2 |
3 |
2 |
¢Ùµ±y£¾0ʱ£¬S¡÷ABM=
1 |
2 |
3 |
2 |
3 |
4 |
½«y=
3 |
4 |
3 |
2 |
1 |
2 |
¡àM1(
3 |
2 |
3 |
4 |
1 |
2 |
3 |
4 |
¢Úµ±y£¼0ʱ£¬S¡÷ABM=
1 |
2 |
3 |
2 |
3 |
4 |
½«y=-
3 |
4 |
| ||
2 |
¡àM3(
2+
| ||
2 |
3 |
4 |
2-
| ||
2 |
3 |
4 |
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýͼÏóµÄƽÒÆ¡¢Öá¶Ô³ÆµÄÐÔÖÊ¡¢µÈÑüÌÝÐμ°¾ØÐεÄÅж¨¡¢Í¼ÐÎÃæ»ýµÄÇ󷨵È֪ʶµÄ×ÛºÏÓ¦ÓÃÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èçͼ£¬°ÑÅ×ÎïÏßy=x2ÓëÖ±Ïßy=1Χ³ÉµÄͼÐÎOABCÈÆÔµãO˳ʱÕëÐýת90¡ãºó£¬ÔÙÑØxÖáÏòÓÒƽÒÆ1¸öµ¥Î»µÃµ½Í¼ÐÎO1A1B1C1£¬ÔòÏÂÁнáÂÛ´íÎóµÄÊÇ£¨¡¡¡¡£©
A¡¢µãO1µÄ×ø±êÊÇ£¨1£¬0£© | B¡¢µãC1µÄ×ø±êÊÇ£¨2£¬-1£© | C¡¢ËıßÐÎOBA1B1ÊǾØÐÎ | D¡¢ÈôÁ¬½ÓOC£¬ÔòÌÝÐÎOCA1B1µÄÃæ»ýÊÇ3 |