题目内容

【题目】如图,已知一次函数y=﹣x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=MP,MB=OM,OE=ON,ND=NP.

(1)b=  

(2)求证:四边形BCDE是平行四边形;

(3)在直线y=﹣x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.

【答案】(1)3;(2)证明见解析;(3)在直线y=﹣x+b上存在这样的点P,使四边形BCDE为正方形,P点坐标是(2,2)或(﹣6,6).

【解析】分析:(1)根据待定系数法,可得b的值;(2)根据矩形的判定与性质,可得PM与ON,PN与OM的关系,根据PC=MP,MB=OM,OE=ON,NO=NP,可得PC与OE,CM与NE,BM与ND,OB与PD的关系,根据全等三角形的判定与性质,可得BE与CD,BC与DE的关系,根据平行四边形的判定,可得答案;(3)根据正方形的判定与性质,可得BE与BC的关系,∠CBM与∠EBO的关系,根据全等三角形的判定与性质,可得OE与BM的关系,可得P点坐标间的关系,可得答案.

本题解析:

(1)一次函数y=﹣x+b的图象过点A(0,3),

3=﹣×0+b,解得b=3.

故答案为:3;

(2)证明:过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,

∴∠M=∠N=∠O=90°,

∴四边形PMON是矩形,

∴PM=ON,OM=PN,∠M=∠O=∠N=∠P=90°.

∵PC=MP,MB=OM,OE=ON,NO=NP,

∴PC=OE,CM=NE,ND=BM,PD=OB,

在△OBE和△PDC中,

∴△OBE≌△PDC(SAS),

BE=DC.

在△MBC和△NDE中,

∴△MBC≌△NDE(SAS),

DE=BC.

∵BE=DC,DE=BC,

∴四边形BCDE是平行四边形;

(3)设P点坐标(x,y),

当△OBE≌△MCB时,四边形BCDE为正方形,

OE=BM,

当点P在第一象限时,即y=x,x=y.

P点在直线上,

解得

当点P在第二象限时,﹣x=y

解得

在直线y=﹣x+b上存在这样的点P,使四边形BCDE为正方形,P点坐标是(2,2)或(﹣6,6).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网