题目内容
【题目】如图,Rt△ABC的内切圆⊙O与两直角边AB、BC分别相切于点D、E,过劣弧 (不包括端点D、E)上任一点作⊙O的切线MN与AB、BC分别交于点M、N.若⊙O的半径为r,则Rt△MBN的周长为( )
A. r B. r C. 2r D. r
【答案】C
【解析】试题解析:
连接OD、OE,
∵O是Rt△ABC的内切圆,
∴OD⊥AB,OE⊥BC,
∵∠ABC=,
∴∠ODB=∠DBE=∠OEB=,
∴四边形ODBE是矩形,
∵OD=OE,
∴矩形ODBE是正方形,
∴BD=BE=OD=OE=r,
∵O切AB于D,切BC于E,切MN于P,NP与NE是从一点出发的圆的两条切线,
∴MP=DM,NP=NE,
∴Rt△MBN的周长为:MB+NB+MN=MB+BN+NE+DM=BD+BE=r+r=2r,
故选C.
练习册系列答案
相关题目
【题目】已知A、B在数轴上分别表示a,b.
(1)对照数轴填写下表:
a | 6 | -6 | -6 | -6 | 2 | -1.5 |
b | 4 | 0 | 4 | -4 | -10 | -1.5 |
A、B两点的距离 |
(2)若A、B两点间的距离记为d,试问:d和a,b有何数量关系?
(3)在数轴上标出所有符合条件的整数点P,使它到10和-10的距离之和为20,并求所有这些整数的和;
(4)找出(3)中满足到10和-10的距离之差大于1而小于5的整数的点P;
(5)若点C表示的数为x,当点C在什么位置时,取得的值最小?