题目内容
【题目】在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.
(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明你的结论;
(2)连接DE,如图②,求证:BD2+CD2=2AD2
(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=,CD=1,则AD的长为 ▲ .(直接写出答案)
【答案】(1)BC=DC+EC,理由见解析;(2)见解析;(3)
【解析】
(1)根据本题中的条件证出△BAD≌△CAE(SAS), 得到BD=CE,再根据条件即可证出结果.
(2)由(1)中的条件可得∠DCE=∠ACE+∠ACB=90°, 所以CE2+CD2=ED2,可推出BD2+CD2=,再根据勾股定理可得出结果.
(3)作AE⊥AD,使AE=AD,连接CE,DE,可推出△BAD≌△CAE(SAS),所以BD=CE=,再根据勾股定理求得DE.
解:(1)结论:BC=DC+EC
理由:如图①中,
∵∠BAC=∠DAE=90°,
∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,
在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS);
∴BD=CE,
∴BC=BD+CD=EC+CD,
即:BC=DC+EC.
(2)BD2+CD2=2AD2,
理由如下:连接CE,
由(1)得,△BAD≌△CAE,
∴BD=CE,∠ACE=∠B,
∴∠DCE=∠ACE+∠ACB=90°,
∴CE2+CD2=ED2,
即:BD2+CD2=ED2;
在Rt△ADE中,AD2+AE2=ED2,又AD=AE,
∴ED2=2AD2;
∴BD2+CD2=2AD2;
(3)AD的长为(学生直接写出答案).
作AE⊥AD,使AE=AD,连接CE,DE,
∵∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
在△BAD与△CAE中,
AB=AC,∠BAD=∠CAE,AD=AE.
∴△BAD≌△CAE(SAS),
∴BD=CE=,
∵∠ADC=45°,∠EDA=45°,
∴∠EDC=90°,
∴DE2=CE2-CD2=()2-12=12,
∴DE=2,
∵∠DAE=90°,AD2+AE2=DE2,
∴AD=.