题目内容
【题目】如图,在等腰直角△ABC的斜边上取异于B,C的两点E,F,使∠EAF=45°,求证:以EF,BE,CF为边的三角形是直角三角形.
【答案】证明见解析.
【解析】试题分析:首先把△ACF绕点A顺时针旋转90°,得到△ABG.连接EG,可得△ACF≌△ABG.进而得到AG=AF,BG=CF,∠ABG=∠ACF=45°,再证明△AEG≌△AEF可得EF=EG,由∠GBE=90°利用勾股定理可得BE2+CF2=EF2,那么根据勾股定理的逆定理得出以EF,BE,CF为边的三角形是直角三角形.
试题解析:证明:把△ACF绕点A顺时针旋转90°,得到△ABG.连接EG.则△ACF≌△ABG,∴AG=AF,BG=CF,∠ABG=∠ACF=45°.∵∠BAC=90°,∠GAF=90°,∴∠GAE=∠EAF=45°.在△AEG和△AEF中,∵,∴△AEG≌△AEF(SAS),∴EG=EF.又∵∠GBE=90°,∴BE2+BG2=EG2,即BE2+CF2=EF2,∴以EF,BE,CF为边的三角形是直角三角形.
练习册系列答案
相关题目