题目内容
【题目】我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数字等式,例如图1,可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下问题:
(1)写出图2中所表示的数学等式_____;
(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=9,ab+bc+ac=26,求a2+b2+c2的值;
(3)小明同学用2张边长为a的正方形、3张边长为b的正方形、5张边长为a、b的长方形纸片拼出了一个长方形,那么该长方形较长一边的边长为多少?
(4)小明同学又用x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出了一个面积为(25a+7b)(2a+5b)长方形,求9x+10y+6.
【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ca;(2)29;(3)较长的一边长为2a+3b;(4)806.
【解析】
(1)直接求得正方形的面积,然后再根据正方形的面积=各矩形的面积之和求解即可;
(2)将a+b+c=9,ab+bc+ac=26代入(1)中得到的关系式,然后进行计算即可;
(3)先列出长方形的面积的代数式,然后分解代数式,可得到矩形的两边长
(4)长方形的面积xa2+yb2+zab=(25a+7b)(9a+5b),然后运算多项式乘多项式法则求得(25a+7
b)(2a+45b)的结果,从而得到x、y、z的值,代入即可求解
解:(1)正方形的面积可表示为=(a+b+c)2;
正方形的面积=a2+b2+c2+2ab+2bc+2ca,
所以(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.
故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.
(2)由(1)可知:a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=92﹣26×2=81﹣52=29.
(3)长方形的面积=2a2+5ab+3b2=(2a+3b)(a+b).
所以长方形的边长为2a+3b和a+b,
所以较长的一边长为2a+3b.
(4)∵长方形的面积=xa2+yb2+zab=(25a+7b)(2a+5b)=50a2+14ab+125ab+35b2=50a2+139ab+35b2,
∴x=50,y=35,z=139.
∴9x+10y+6=450+350+6=806.
![](http://thumb.zyjl.cn/images/loading.gif)