题目内容

【题目】如图,己知ABO的直径,AC是弦,点PBA延长线上一点,连接PCBCPCA=∠B

1)求证:PCO的切线;

2)若PC=6PA=4,求直径AB的长.

【答案】(1)证明见解析 (2)5

【解析】

1)连接OC,由圆周角定理得出∠ACB=90°,得出∠1+2=90°,由等腰三角形的性质及等式性质得出∠PCA=2,因此∠1+PCA=90°,即PCOC,即可得出结论;

2)由∠P=P,∠PCA=B,得到△PCA∽△PBC,再由相似三角形的性质得出PC2=PAPB,求出PB,即可得出直径AB的长.

1)连接OC,如图所示:

AB是⊙的直径,∴∠ACB=90°,即∠1+2=90°.

OB=OC,∴∠2=B

又∵∠PCA=B,∴∠PCA=2,∴∠1+PCA=90°,即PCOC,∴PC是⊙O的切线;

2)∵∠P=P,∠PCA=B,∴△PCA∽△PBC,∴PCPB=PAPC,∴PC2=PAPB,∴62=4×PB,解得:PB=9,∴AB=PBPA=94=5

一题一题找答案解析太慢了
下载作业精灵直接查看整书答案解析
立即下载
练习册系列答案
相关题目

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网