题目内容
【题目】如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有( )个.
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】
由图像可知a>0,对称轴x=-=1,即2a+b =0,c<0,根据抛物线的对称性得x=-1时y=0,抛物线与x轴有2个交点,故△=b2﹣4ac>0,由此即可判断.
解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=﹣=1,
∴b=﹣2a<0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc>0,所以①正确;
∵抛物线与x轴的一个交点为(3,0),而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(﹣1,0),
∵x=﹣1时,y=0,
∴a﹣b+c=0,所以②错误;
∵b=﹣2a,
∴2a+b=0,所以③错误;
∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,所以④正确.
故选:B.
练习册系列答案
相关题目