题目内容
【题目】如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°,连接AC.
(1)△ACD是直角三角形吗?为什么?
(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?
【答案】(1) △ACD是直角三角形,见解析; (2) 3600元.
【解析】
(1)先在Rt△ABC中,利用勾股定理可求AC,在△ACD中,易求AC2+CD2=AD2,再利用勾股定理的逆定理可知△ACD是直角三角形,且∠ACD=90°;
(2)分别利用三角形的面积公式求出△ABC、△ACD的面积,两者相加即是四边形ABCD的面积,再乘以100,即可求总花费.
解:(1)在Rt△ABC中,
∵AB=3m,BC=4m,∠B=90°,AB2+CB2=AC2
∴AC=5cm,
在△ACD中,AC=5cm,CD=12m,DA=13m,
∴AC2+CD2=AD2,
∴△ACD是直角三角形,∠ACD=90°;.
(2)∵S△ABC=×3×4=6,S△ACD=×5×12=30,
∴S四边形ABCD=6+30=36,
费用=36×100=3600(元)
【题目】王老师将本班的“校园安全知识竞赛”成绩(成绩用s表示,满分为100分)分为5组,第1组:50≤x<60,第2组:60≤x<70,…,第5组:90≤x<100.并绘制了如图所示的频率分布表和频数分布直方图(不完整).
(1)请补全频率分布表和频数分布直方图;
(2)王老师从第1组和第5组的学生中,随机抽取两名学生进行谈话,求第1组至少有一名学生被抽到的概率;
(3)设从第1组和第5组中随机抽到的两名学生的成绩分别为m、n,求事件“|m﹣n|≤10”的概率.
分组编号 | 成绩 | 频数 | 频率 |
第1组 | 50≤s<60 | 0.04 | |
第2组 | 60≤s<70 | 8 | 0.16 |
第3组 | 70≤s<80 | 0.4 | |
第4组 | 80≤s<90 | 17 | 0.34 |
第5组 | 90≤s≤100 | 3 | 0.06 |
合计 | 1 |