题目内容
【题目】在△ABC中,D为BC上一点,连接AD,过点B作BE垂直于CA的延长线于点E,BE与DA的延长线相交于点F.
(1)如图1,若AB平分∠CBE,∠ADB=30°,AE=3,AC=7,求CD的长;
(2)如图2,若AB=AC,∠ADB=45°,求证;BC=DF.
【答案】(1)CD=2﹣3;(2)见解析.
【解析】
(1)作AH⊥BC于H.解直角三角形求出DH,CH即可解决问题.
(2)作FM⊥BC于M.AN⊥BC于N,设AE交FM于点O.证明△FMD是等腰直角三角形,△FMB≌△BNA(AAS)即可解决问题.
解:(1)作AH⊥BC于H.
∵AB平分∠EBC,AE⊥BF,AH⊥BC,
∴AE=AH=3,
在Rt△AHD中,∵∠ADH=30°,
∴AD=2AH=6,DH==3,
在Rt△ACH中,CH==2,
∴CD=CH﹣DH=2﹣3.
(2)如图,作FM⊥BC于M.AN⊥BC于N,设AE交FM于点O.
∵CE⊥BF,FM⊥BC,
∴∠OEF=∠OMC,∵∠EOF=∠MOC,
∴∠OFE=∠C,
∵AB=AC,
∴∠C=∠ABC,
∴∠OFE=∠B,
∵∠FDM=∠MFD=45°,
∴FM=DM,DF=FM,
∵∠BFA=45°+∠BFM,∠BAF=∠ABC+∠ADB=45°+∠ABD,
∴∠BFA=∠BAF,
∴BF=BA,
∵∠BFA=∠ABN,BF=BA,∠FMB=∠ANB=90°,
∴△FMB≌△BNA(AAS),
∴FM=BN,
∴BC=2BN=2FM=DF.
【题目】为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若矩形空地的面积为160m2,求x的值;
(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.
甲 | 乙 | 丙 | |
单价(元/棵) | 14 | 16 | 28 |
合理用地(m2/棵) | 0.4 | 1 | 0.4 |