题目内容
将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是
A.(﹣3,2) B.(﹣1,2) C.(1,2) D.(1,﹣2)
如图,在直角坐标系中,先描出点A(1,3),点B(4,1)
(1)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);
(2)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).
如图①,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为 ( )
A. B. C. D.
如图,△ABC中,∠A=65°,∠B=75°,将△ABC沿EF对折,使C点与C′点重合.当∠1=45°时,∠2=________°.
如图,△ABC中,∠ABC=30°,∠ACB=50°,折叠△ACB使点C与AB边上的点D重合,折痕为AE,连DE,则∠AED为( )
A. 70° B. 75° C. 80° D. 85°
根据对徐州市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数的图象如图②所示.
(1)分别求出y1、y2与x之间的函数关系式;
(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时 获得的销售利润之和最大,最大利润是多少?
计算:()0﹣2|1﹣sin30°|+()﹣1=________.
如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A和第一象限内一点B,该抛物线顶点H的纵坐标为5.
(1)求抛物线的解析式;
(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=,求k的值;
(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,
ⅰ)求点P的坐标;
ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.
顺次连结菱形各边中点所得的四边形必定是_____.