题目内容

【题目】九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如表:

售价(元/件)

100

110

120

130

月销量(件)

200

180

160

140

已知该运动服的进价为每件60元,设售价为x元.

(1)求月销售m件与售价x元/件之间的函数表达式.

(2)设销售该运动服的月利润为y元,写出y与x之间的函数表达式,并求出售价x为多少时,当月的利润最大,最大利润是多少?

【答案】(1)y=﹣2x+400;(2)售价为130元时,当月的利润最大,最大利润是9800元.

【解析】

试题分析:(1)运用待定系数法求出月销量;

(2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润.

解:(1)设月销量y与x的关系式为y=kx+b,

由题意得,

解得

则y=﹣2x+400;

(2)由题意得,W=(x﹣60)(﹣2x+400)

=﹣2x2+520x﹣24000

=﹣2(x﹣130)2+9800,

故售价为130元时,当月的利润最大,最大利润是9800元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网