题目内容

【题目】如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.

(1)求证:CP=AQ;

(2)若BP=1,PQ=AEF=45°,求矩形ABCD的面积.

【答案】(1)证明见解析;(2)8

【解析】

试题分析:(1)由矩形的性质得出A=ABC=C=ADC=90°,AB=CD,AD=BC,ABCD,ADBC,证出E=F,AE=CF,由ASA证明CFP≌△AEQ,即可得出结论;

(2)证明BEP、AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面积.

试题解析:(1)证明:四边形ABCD是矩形,∴∠A=ABC=C=ADC=90°,AB=CD,AD=BC,ABCD,ADBC,∴∠E=F,BE=DF,AE=CF,在CFP和AEQ中,∵∠C=A,CF=AE,F=E∴△CFP≌△AEQ(ASA),CP=AQ;

(2)解:ADBC,∴∠PBE=A=90°,∵∠AEF=45°,∴△BEP、AEQ是等腰直角三角形,BE=BP=1,AQ=AE,PE=BP=EQ=PE+PQ==AQ=AE=3,AB=AE﹣BE=2,CP=AQ,AD=BC,DQ=BP=1,AD=AQ+DQ=3+1=4,矩形ABCD的面积=ABAD=2×4=8.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网