题目内容
【题目】一元二次方程:M:ax2+bx+c=0; N:cx2+bx+a=0,其中ac≠0,a≠c,以下四个结论:
①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;
②如果方程M有两根符号相同,那么方程N的两根符号也相同;
③如果m是方程M的一个根,那么是方程N的一个根;
④如果方程M和方程N有一个相同的根,那么这个根必是x=1
正确的个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】①两个方程根的判别式都是△=b2﹣4ac,所以如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根正确;②如果方程M的两根符号相同,那么方程N的两根符号也相同,那么△=b2﹣4ac≥0, >0,所以a与c符号相同, >0,所以方程N的两根符号也相同,结论正确;③如果m是方程M的一个根,那么m2a+mb+c=0,两边同时除以m2,得c+b+a=0,所以是方程N的一个根,结论正确;D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误.正确的是①②③共3个,故选C.
练习册系列答案
相关题目