题目内容
【题目】有一个二次函数满足以下条件:
①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);
②对称轴是x=3;
③该函数有最小值是﹣2.
(1)请根据以上信息求出二次函数表达式;
(2)将该函数图象x>x2的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.
【答案】(1)y=(x﹣3)2﹣2;(2)11<x3+x4+x5<9+2.
【解析】
(1)利用二次函数解析式的顶点式求得结果即可;
(2)由已知条件可知直线与图象“G”要有3个交点.分类讨论:分别求得平行于x轴的直线与图象“G”有2个交点、1个交点时x3+x4+x5的取值范围,易得直线与图象“G”要有3个交点时x3+x4+x5的取值范围.
(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣2)
设二次函数表达式为:y=a(x﹣3)2﹣2.
∵该图象过A(1,0)
∴0=a(1﹣3)2﹣2,解得a=.
∴表达式为y=(x﹣3)2﹣2
(2)如图所示:
由已知条件可知直线与图形“G”要有三个交点
1当直线与x轴重合时,有2个交点,由二次函数的轴对称性可求x3+x4=6,
∴x3+x4+x5>11,
当直线过y=(x﹣3)2﹣2的图象顶点时,有2个交点,
由翻折可以得到翻折后的函数图象为y=﹣(x﹣3)2+2,
∴令(x﹣3)2+2=﹣2时,解得x=3+2或x=3﹣2(舍去)
∴x3+x4+x5<9+2.
综上所述11<x3+x4+x5<9+2.
练习册系列答案
相关题目