题目内容
【题目】已知点O在直线MN上,过点O作射线OP,使∠MOP=130°,将一块直角三角板的直角顶点始终放在点O处.
(1)如图①,当三角板的一边OA在射线OM上,另一边OB在直线MN的上方时,求∠POB的度数;
(2)若将三角板绕点O旋转至图②所示的位置,此时OB恰好平分∠PON,求∠BOP和∠AOM 的度数;
(3)若将三角板绕点O旋转至图③所示位置,此时OA在∠PON 的内部,若OP所在的直线平分∠MOB,求∠POA 的度数;
【答案】(1)40°;(2)25°;65°;(3)40°
【解析】
(1)根据题意,∠POB=∠POA-∠AOB代入数据即可求出结论;
(2)根据题意,∠PON=180°-∠POM,又根据角平分线的定义可得∠POB=∠NOB
=,代入已知即可求解;再根据余角定义求出∠POA的度数;
(3)从已知条件可得,∠MOE=180°-∠MOP,再根据角平分线的定义得∠MOB=2∠MOE, ∠NOA=180°-∠MOB, ∠AON=90°-∠BON, ∠POB=∠PON-∠AON,代入求值即可.
解:(1)∠POB=∠MOP-∠AOB=130°-90°=40°.
(2)∵∠MON是平角,∠MOP=130°,
∴∠PON=∠MON-∠MOP=180°-130°=50°
∵OB 平分∠PON,
∴∠BOP=∠PON=25°
∵∠AOB=90゜,
∴∠AOP=∠AOB-∠BOP=90°-25°=65°
∴∠MOA=∠MOP-∠AOP=130°-65°=65°;
(3)如图,OE是PO的延长线,
∵∠MOP=130°
∴∠MOE=50°
∵OE是∠MOB的平分线,
∴∠MOB=100°,
∴∠BON=80°
∵∠AOB=90°
∴∠AON=∠AOB-∠BON=90°-80°=10°
∴∠POA=∠PON-∠AON=50°-10°=40°