题目内容
【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作AF∥BC,交BE的延长线于点F,连结CF.
(1)求证:① △AEF≌△DEB;② 四边形ADCF是平行四边形;
(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.
【答案】(1)①见解析;②见解析;(2)矩形,理由见解析
【解析】
(1)①根据AAS证明△AFE≌△DBE即可;
②利用①中全等三角形的对应边相等得到AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”证得结论;
(2)由三线合一可证明AD⊥BC,然后根据矩形的判定方法解答即可.
(1)证明:①∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD,
在△AFE和△DBE中,
∵∠AFE=∠DBE,
∠FEA=∠BED,
AE=DE,
∴△AFE≌△DBE(AAS),
∴AF=BD,
∴AF=DC.
②由(1)知,△AFE≌△DBE,则AF=DB.
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形;
(2)四边形ADCF是矩形.理由如下:
证明:∵在△ABC中,AB=AC, AD是斜边BC上的中线,
∴AD⊥BC,
∵四边形ADCF是平行四边形,
∴平行四边形ADCF是矩形.
【题目】随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:
时间(分钟) | 里程数(公里) | 车费(元) | |
小明 | 8 | 8 | 12 |
小刚 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?
【题目】问题:探究函数的图象与性质.小华根据学习函数的经验,对函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:在函数y=|x|﹣2中,自变量x可以是任意实数;
Ⅰ如表是y与x的几组对应值.
y | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
x | … | 1 | 0 | ﹣1 | ﹣2 | ﹣1 | 0 | m | … |
①m= ;
②若A(n,8),B(10,8)为该函数图象上不同的两点,则n= ;
Ⅱ如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;根据函数图象可得:
①该函数的最小值为 ;
②该函数的另一条性质是 .