题目内容
【题目】如图,点D、E是等边△ABC的边BC、AC上的点,且CD=AE,AD、BE相交于P点,BQ⊥AD于Q,已知PE=1,PQ=2.5,则AD等于( )
A.5B.6C.7D.8
【答案】B
【解析】
由题中条件可得△ABE≌△CAD,得出AD=BE,∠ABE=∠CAD,进而得出∠BPD=60°,又BQ⊥AD,所以在Rt△BPQ中,求解BP的长,进而可得出结论.
解:∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠C=60°,
又AE=CD,
∴△ABE≌△CAD(SAS),
∴∠ABE=∠CAD,
∴∠BPD=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°,
∵BQ⊥AD,
∴∠PBQ=30°,
∴BP=2PQ=2×2.5=5,
∴AD=BE=BP+PE=5+1=6.
故选:B.
练习册系列答案
相关题目