题目内容

【题目】如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:

①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1

其中正确的是(

A.①②③ B.①③④ C.①③⑤ D.②④⑤

【答案】C.

【解析】

试题解析:∵抛物线的顶点坐标A(1,3),

∴抛物线的对称轴为直线x=-=1,

∴2a+b=0,所以①正确;

∵抛物线开口向下,

∴a<0,

∴b=-2a>0,

∵抛物线与y轴的交点在x轴上方,

∴c>0,

∴abc<0,所以②错误;

∵抛物线的顶点坐标A(1,3),

∴x=1时,二次函数有最大值,

∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;

∵抛物线与x轴的一个交点为(4,0)

而抛物线的对称轴为直线x=1,

∴抛物线与x轴的另一个交点为(-2,0),所以④错误;

∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)

∴当1<x<4时,y2<y1,所以⑤正确.

故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网