题目内容
【题目】如图所示,点P在∠AOB内,点M、N分别是点P关于AO、BO所在直线的对称点.
(1)若△PEF的周长为20,求MN的长.
(2)若∠O=50°,求∠EPF的度数.
(3)请直接写出∠EPF与∠O的数量关系是_____________________________
【答案】(1)20;(2)80°;(3)∠EPF= 180°-2∠O
【解析】
(1)根据轴对称的性质可得EM=EP,FP=FN,进而推出MN=EM+EF+FN=EP+EF+FP=△PEF的周长即可;
(2)由(1)及等腰三角形的性质、四边形的内角和找出∠M+∠N与∠O、∠EPF与∠O的关系即可;
(3)由(2)可直接得到∠EPF= 180°-2∠O.
解:(1)∵点M、N分别是点P关于AO、BO所在直线的对称点.
∴OA垂直平分PM,OB垂直平分PN,
∴EM=EP,FP=FN,
∴MN=EM+EF+FN=EP+EF+FP=△PEF的周长,
又∵△PEF的周长为20,
∴MN=20 cm.
(2)由(1)知:EM=EP,FP=FN,
∴∠PEF=2∠M,∠PFE=2∠N,
∵∠PCE=∠PDF=90°,
∴在四边形OCPD中,∠CPD+∠O=180°,
又∵在△PMN中,∠MPN+∠M+∠N=180°,且∠CPD+∠O=180°,
∴∠M+∠N=∠O=50°.
∴在△PEF中,∠EPF +∠PEF+∠PFE=∠EPF +2∠M +2∠N =180°,
即∠EPF=180°-2∠M -2∠N =180°-2(∠M +∠N)= 180°-2∠O=80°.
(3)由(2)可直接得到∠EPF= 180°-2∠O.
故答案为:∠EPF= 180°-2∠O.
练习册系列答案
相关题目