题目内容
【题目】已知,E、F是四边形ABCD的对角线AC上的两点,AE=CF,BE=DF,BE∥DF.求证:四边形ABCD是平行四边形.
【答案】证明:∵DF∥BE ∴∠DFA=∠BEC
∵CF=AE,EF=EF
∴AF=CE
在△ADF和△CBE中,
∵
∴△ADF≌△CBE(SAS)
∴AD=BC
∴∠DAC=∠BCA
∴AD∥BC
∴四边形ABCD是平行四边形.
【解析】因为AE=CF,DF=BE,DF∥BE,所以可根据SAS判定△ADF≌△CBE,即有AD=BC,AD∥BC,故可根据一组对边平行且相等的四边形是平行四边形进行判定.
【考点精析】利用平行四边形的判定对题目进行判断即可得到答案,需要熟知两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.
练习册系列答案
相关题目