题目内容
【题目】如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.
(1)求这条直线的解析式;
(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0). ①求n的值及直线AD的解析式;
②求△ABD的面积;
③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.
【答案】
(1)解:∵直线y=﹣2x+a与y轴交于点C (0,6),
∴a=6,
∴该直线解析式为y=﹣2x+6
(2)解:①∵点D(﹣1,n)在直线BC上,
∴n=﹣2×(﹣1)+6=8,
∴点D(﹣1,8).)
设直线AD的解析式为y=kx+b,
将点A(﹣3,0)、D(﹣1,8)代入y=kx+b中,
得: ,
解得: ,
∴直线AD的解析式为y=4x+12.
②令y=﹣2x+6中y=0,则﹣2x+6=0,解得:x=3,
∴点B(3,0).
∵A(﹣3,0)、D(﹣1,8),
∴AB=6.
S△ABD= AByD= ×6×8=24.
③∵点M在直线y=﹣2x+6上,
∴M(m,﹣2m+6),
则
当m<3时,S=
即S=﹣6m+18;
当m>3时,
即S=6m﹣18.
【解析】(1)将点C(0,6)代入y=﹣2x+a求得a的值即可;(2)①将点D坐标代入直线BD解析式可得n的值,再利用待定系数法可求得直线AD解析式;②根据三角形面积公式即可得;③设M(m,﹣2m+6),根据面积公式可得函数关系式.
【题目】(本题8分) 求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如,但可以通过计算器求. 还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:
n | 16 | 0.16 | 0.0016 | 1600 | 160000 | … |
4 | 0.4 | 0.04 | 40 | 400 | … |
(1)表中所给的信息中,你能发现什么规律?(请将规律用文字表达出来)
(2)运用你发现的规律,探究下列问题:已知1.435,求下列各数的算术平方根:
①0.0206 ; ②20600 ;
(3)根据上述探究过程类比研究一个数的立方根已知1.260,则