题目内容
【题目】数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b
(1) 直接写出:a=__________,b=_________
(2) 数轴上点P对应的数为x,若PA+PB=20,求x的值
(3) 若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度
【答案】(1)(1)a=﹣2,b=5;(2)x=-8.5或11.5;(3)2秒或秒或6秒或8秒
【解析】
(1)根据多项式的系数即可得出结论;
(2)分情况讨论,当点P在点A左边时,当点P在点A右边时,在点B左边,以及当点P在点B右边时,三种情况分别求解即可 ;
(3)分点N未到达点A之前和之后,建立方程求解即可得出结论.
(1)∵多项式6x3y-2xy+5的二次项系数为a,常数项为b,
∴a=-2,b=5,
故答案为:-2,5;
(2)①当点P在点A左边,由PA+PB=20得: (﹣2 ﹣x )+(5﹣x)=20, ∴
②当点P在点A右边,在点B左边,由PA+PB=20得: x ﹣(﹣2 )+(5﹣x)=20,
∴ ,不成立
③当点P在点B右边,由PA+PB=20得:x ﹣(﹣2 )+(x﹣5), ∴.
∴或11.5;
(3)设经过t秒后,M、N两点相距1个单位长度,
由运动知,AM=t,BN=2t,
① 当点N到达点A之前时,
Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,
t+1+2t=5+2,
所以,t=2秒,
Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,
t+2t﹣1=5+2,
所以,t=秒,
② 当点N到达点A之后时,
Ⅰ、当N未追上M时,M、N两点相距1个单位长度,
t﹣[2t﹣(5+2)]=1,
所以,t=6秒;
Ⅱ、当N追上M后时,M、N两点相距1个单位长度,
[2t﹣(5+2)]﹣t=1,
所以,t=8秒;
即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.
【题目】为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:
甲型客车 | 乙型客车 | |
载客量(人/辆) | 35 | 30 |
租金(元/辆) | 400 | 320 |
学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.
(1)参加此次研学活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为 辆;
(3)学校共有几种租车方案?最少租车费用是多少?