题目内容
【题目】如图,抛物线y= x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(1,0),C(0,2).
(1)求抛物线的表达式;
(2) 请你在抛物线的对称轴上找点P,使△PCD是以CD为腰的等腰三角形,所有符合条件的点P的坐标分别为 ;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
【答案】(1)y=﹣x2+x+2;(2)P1(,4),P2(,),P3(,﹣);(3)S四边形CDBF的面积最大=,E(2,1)
【解析】
(1)直接把A点和C点坐标代入y=﹣x2+mx+n得m、n的方程组,然后解方程组求出m、n即可得到抛物线解析式;
(2)先利用抛物线对称轴方程求出抛物线的对称轴为直线x=﹣,则D(,0),则利用勾股定理计算出CD=,然后分类讨论:如图1,当CP=CD时,利用等腰三角形的性质易得P1(,4);当DP=DC时,易得P2(,),P3(,﹣);
(3)先根据抛物线与x轴的交点问题求出B(4,0),再利用待定系数法求出直线BC的解析式为y=﹣x+2,利用一次函数图象上点的坐标特征和二次函数图象上点的坐标特征,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),则FE=﹣x2+2x,由于△BEF和△CEF共底边,高的和为4,则S△BCF=S△BEF+S△CEF=4EF=﹣x2+4x,加上S△BCD=,所以S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+(0≤x≤4),然后根据二次函数的性质求四边形CDBF的面积最大,并得到此时E点坐标.
(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).
∴解得:,
∴抛物线的解析式为:y=﹣x2+x+2;
(2)抛物线的对称轴为直线,则D(,0),
∴,
如图1,
当CP=CD时,则P1(,4);
当DP=DC时,则P2(,),P3(,﹣),
综上所述,满足条件的P点坐标为P1(,4),P2(,),P3(,﹣);
(3)当y=0时,0=﹣x2+x+2
∴x1=﹣1,x2=4,∴B(4,0).
设直线BC的解析式为y=kx+b,由图象,得
,解得:,
∴直线BC的解析式为:y=﹣x+2.
如图2,过点C作CM⊥EF于M,
设E(a,﹣a+2),F(a,﹣a2+a+2),
∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).
∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BDOC+EFCM+EFBN,
=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),
=﹣a2+4a+(0≤x≤4).=﹣(a﹣2)2+
∴a=2时,S四边形CDBF的面积最大=,
∴E(2,1).