题目内容

如图点P是矩形ABCD的边AD上的任一点,AB=8,BC=15,则点P到矩形的两条对角线AC和BD的距离之和是________.


分析:由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=8,BC=15,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=OA•PE+OD•PF,代入数值即可求得结果.
解答:解:过点P作PE⊥AC于E,PF⊥BD与F,连接OP,
∵四边形ABCD是矩形,
∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,
S△AOD=S矩形ABCD
∴OA=OD=AC,
∵AB=8,BC=15,
∴AC===17,S△AOD=S矩形ABCD=30,
∴OA=OD=
∴S△AOD=S△APO+S△DPO=OA•PE+OD•PF=OA•(PE+PF)=×(PE+PF)=30,
∴PE+PF=
∴点P到矩形的两条对角线AC和BD的距离之和是
故答案为:
点评:此题考查了矩形的性质.解此题的关键是将△AOD的面积用矩形求得,再用△APO与△POD的面积和表示出来.还要注意数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网