题目内容
【题目】阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:
设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a= ,b= ;
(2)利用所探索的结论,找一组正整数a、b、m、n填空: ;
(3)若a+4=(m+n)2,且a、m、n均为正整数,求a的值?
【答案】(1)、m2+3n2,2mn;(2)、4、2、1、1;(3)、a=22+3×12=7,或a=12+3×22=13
【解析】
试题分析:(1)、根据完全平方公式运算法则,即可得出a、b的表达式;(2)、首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)、根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.
试题解析:(1)、∵a+b=, ∴a+b=m2+3n2+2mn, ∴a=m2+3n2,b=2mn.
(2)、设m=1,n=1, ∴a=m2+3n2=4,b=2mn=2.
(3)、由题意,得: a=m2+3n2,b=2mn ∵4=2mn,且m、n为正整数, ∴m=2,n=1或者m=1,n=2,
∴a=22+3×12=7,或a=12+3×22=13.
【题目】甲、乙、丙、丁四名射击选手,在相同条件下各射靶10次,他们的成绩统计如下表所示,
若要从他们中挑选一位成绩最高且波动较小的选手参加射击比赛,那么一般应选( )
甲 | 乙 | 丙 | 丁 | |
平均数(环) | 9 | 9.5 | 9 | 9.5 |
方差 | 3.5 | 4 | 4 | 5.4 |
A. 甲 B. 乙 C. 丙 D. 丁