题目内容
如图,已知在?ABCD中,E,F分别是AB,CD的中点,BD是对角线,AG∥DB交CB延长线于G.若四边形BEDF是菱形,则四边形AGBD是
- A.平行四边形
- B.矩形
- C.菱形
- D.正方形
B
分析:先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
解答:解:当四边形BEDF是菱形时,四边形AGBD是矩形.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC.
∵AG∥BD,
∴四边形AGBD是平行四边形.
∵四边形BEDF是菱形,
∴DE=BE.
∵AE=BE,
∴AE=BE=DE.
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°,
∴2∠2+2∠3=180°.
∴∠2+∠3=90°.
即∠ADB=90°.
∴四边形AGBD是矩形.
故选:B.
点评:主要考查了平行四边形、菱形的性质和矩形的判定.解题的关键是熟练掌握平行四边形、菱形性质以及矩形的判定定理.
分析:先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
解答:解:当四边形BEDF是菱形时,四边形AGBD是矩形.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC.
∵AG∥BD,
∴四边形AGBD是平行四边形.
∵四边形BEDF是菱形,
∴DE=BE.
∵AE=BE,
∴AE=BE=DE.
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°,
∴2∠2+2∠3=180°.
∴∠2+∠3=90°.
即∠ADB=90°.
∴四边形AGBD是矩形.
故选:B.
点评:主要考查了平行四边形、菱形的性质和矩形的判定.解题的关键是熟练掌握平行四边形、菱形性质以及矩形的判定定理.
练习册系列答案
相关题目