题目内容
【题目】如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为( )
A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变
【答案】D
【解析】
试题分析:如图,作辅助线;首先证明△BOM∽△OAN,得到;设B(﹣m,),A(n,),得到BM=,AN=,OM=m,ON=n,进而得到mn=,mn=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=为定值,即可解决问题.
解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;
∵∠AOB=90°,
∴∠BOM+∠AON=∠AON+∠OAN=90°,
∴∠BOM=∠OAN,
∵∠BMO=∠ANO=90°,
∴△BOM∽△OAN,
∴;
设B(﹣m,),A(n,),
则BM=,AN=,OM=m,ON=n,
∴mn=,mn=;
∵∠AOB=90°,
∴tan∠OAB=①;
∵△BOM∽△OAN,
∴===②,
由①②知tan∠OAB=为定值,
∴∠OAB的大小不变,
故选:D.
练习册系列答案
相关题目