题目内容
某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,;图②中,.图③是该同学所做的一个实验:他将△的直角边与△的斜边重合在一起,并将△沿方向移动.在移动过程中,两点始终在边上(移动开始时点与点重合).
(1) 在△沿方向移动的过程中,该同学发现:两点间的距离 ;连接的度数 .(填“不变”、“ 逐渐变大”或“逐渐变小”)
(2) △在移动过程中,与度数之和是否为定值,请加以说明;
(3) 能否将△移动至某位置,使的连线与平行?如果能,请求出此时的度数,如果不能,请说明理由。
(1) 在△沿方向移动的过程中,该同学发现:两点间的距离 ;连接的度数 .(填“不变”、“ 逐渐变大”或“逐渐变小”)
(2) △在移动过程中,与度数之和是否为定值,请加以说明;
(3) 能否将△移动至某位置,使的连线与平行?如果能,请求出此时的度数,如果不能,请说明理由。
(1)变小,变大;(2)和为定值,理由见解析;(3)15°.
试题分析:(1)利用图形的变化得出F、C两点间的距离变化和,∠FCE的度数变化规律;
(2)利用外角的性质得出∠FEC+∠CFE=∠FED=45°,即可得出答案;
(3)要使FC∥AB,则需∠FCE=∠A=30°,进而得出∠CFE的度数.
试题解析:(1)F、C两点间的距离逐渐变小;连接FC,∠FCE的度数逐渐变大;
(2)∠FCE与∠CFE度数之和为定值;
理由:∵∠D=90°,∠DFE=45°,
又∵∠D+∠DFE+∠FED=180°,
∴∠FED=45°,
∵∠FED是△FEC的外角,
∴∠FEC+∠CFE=∠FED=45°,
即∠FCE与∠CFE度数之和为定值;
(3)要使FC∥AB,则需∠FCE=∠A=30°,
又∵∠CFE+∠FCE=45°,
∴∠CFE=45°-30°=15°.
练习册系列答案
相关题目