题目内容
如图,矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当点P在BC上由B向C移动而点R不动时,下列结论成立的是( )
A.线段EF的长逐渐增大
B.线段EF的长逐渐减小
C.线段EF的长不变
D.线段EF的长与点P的位置有关
C
解析试题分析:连接AR.因为E、F分别是AP、RP的中点,则EF为△APR的中位线,所以EF=AR,为定值.所以线段EF的长不改变.故选C.
考点:三角形中位线定理.
点评:本题要求熟练掌握三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
练习册系列答案
相关题目
如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足( )
A、a≥
| ||
B、a≥b | ||
C、a≥
| ||
D、a≥2b |