题目内容
【题目】如图,AD为△ABC的中线,BE为三角形ABD中线.
(1)在△BED中作BD边上的高EF;
(2)若△ABC的面积为40,BD=5,求EF的长.
【答案】
(1)解;如图所示:
(2)解;∵AD为△ABC的中线,BE为三角形ABD中线,
∴S△ABD= S△ABC,S△BDE= S△ABD,
∴S△BDE= S△ABC,
∵△ABC的面积为40,BD=5,
∴ ×5×EF=10,
∴EF=4
【解析】(1)根据过直线外一点作已知直线的垂线的方法作图即可;(2)利用三角形中线的性质得出S△BDE= S△ABC , 进而借助三角形面积公式求出即可.
【考点精析】掌握三角形的面积是解答本题的根本,需要知道三角形的面积=1/2×底×高.
练习册系列答案
相关题目
【题目】某校食堂的中餐与晚餐的资费标准如下:
种类 | 单价 |
米饭 | 0.5元/份 |
A类套餐菜 | 3.5元/份 |
B类套餐菜 | 2.5元/份 |
小杰同学某星期从周一到周五每天的中餐与晚餐均在学校选用A类或B类中的一份套餐菜与一份米饭用餐,这五天共消费36元.请问小杰在这五天内,A,B类套餐菜各选用了多少次?