题目内容
“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?
分析:(1)有两个等量关系:帐篷件数+食品件数=320,帐篷件数-食品件数=80,直接设未知数,列出二元一次方程组,求出解;
(2)先由等量关系得到一元一次不等式组,求出解集,再根据实际含义确定方案;
(3)分别计算每种方案的运费,然后比较得出结果.
(2)先由等量关系得到一元一次不等式组,求出解集,再根据实际含义确定方案;
(3)分别计算每种方案的运费,然后比较得出结果.
解答:解:(1)设打包成件的帐篷有x件,则食品件数为(x-80)件
则x+(x-80)=320(或x-(320-x)=80)(2分)
解得x=200,
∴x-80=120(3分)
答:打包成件的帐篷和食品分别为200件和120件.(3分)
方法二:设打包成件的帐篷有x件,食品有y件,
则
(2分)
解得
(3分)
答:打包成件的帐篷和食品分别为200件和120件;(3分)
(注:用算术方法做也给满分.)
(2)设租用甲种货车z辆,则
(4分)
解得2≤z≤4(5分)
∴z=2或3或4,民政局安排甲、乙两种货车时有3种方案.
设计方案分别为:①甲车2辆,乙车6辆;
②甲车3辆,乙车5辆;
③甲车4辆,乙车4辆;(6分)
(3)3种方案的运费分别为:
①2×4000+6×3600=29600(元);
②3×4000+5×3600=30000(元);
③4×4000+4×3600=30400(元).
∵方案一小于方案二小于方案三,
∴方案①运费最少,最少运费是29600元.
(注:用一次函数的性质说明方案①最少也不扣分.)
则x+(x-80)=320(或x-(320-x)=80)(2分)
解得x=200,
∴x-80=120(3分)
答:打包成件的帐篷和食品分别为200件和120件.(3分)
方法二:设打包成件的帐篷有x件,食品有y件,
则
|
解得
|
答:打包成件的帐篷和食品分别为200件和120件;(3分)
(注:用算术方法做也给满分.)
(2)设租用甲种货车z辆,则
|
解得2≤z≤4(5分)
∴z=2或3或4,民政局安排甲、乙两种货车时有3种方案.
设计方案分别为:①甲车2辆,乙车6辆;
②甲车3辆,乙车5辆;
③甲车4辆,乙车4辆;(6分)
(3)3种方案的运费分别为:
①2×4000+6×3600=29600(元);
②3×4000+5×3600=30000(元);
③4×4000+4×3600=30400(元).
∵方案一小于方案二小于方案三,
∴方案①运费最少,最少运费是29600元.
(注:用一次函数的性质说明方案①最少也不扣分.)
点评:关键是弄清题意,找出等量或者不等关系:帐篷件数+食品件数=320,帐篷件数-食品件数=80,甲种货车辆数+乙种货车辆数=8,得到乙种货车辆数=8-甲种货车辆数,代入下面两个不等关系:甲种货车装运帐篷件数+乙种货车装运帐篷件数≥200,甲种货车装运食品件数+乙种货车装运食品件数≥120.
练习册系列答案
相关题目
“震灾无情人有情“,玉树地震牵动了全国人民的心,武警某部队接到命令,运送一批救灾物资到灾区,货车在公路A处加满油后,以每小时60千米的速度匀速行驶,前往与A处相距360千米的灾区B处.下表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间关系:
(1)请你用学过的函数中的一种建立x与y之间的函数关系式,说明选择这种函数的理由;(不要求写出自变量的取值范围)
(2)如果货车的行驶速度和每小时的耗油量不变,货车行驶4小时后到达C处,C的前方12千米的D处有一加油站,那么在D处至少加多少升油,才能使货车到达灾区B处卸去货物后能顺利返回D处加油?(根据驾驶经验,为保险起见,油箱内余油量应随时不少于10升)
行驶时间x(小时) | 0 | 1 | 2 | 3 | 4 |
余油量y(升) | 150 | 120 | 90 | 60 | 30 |
(2)如果货车的行驶速度和每小时的耗油量不变,货车行驶4小时后到达C处,C的前方12千米的D处有一加油站,那么在D处至少加多少升油,才能使货车到达灾区B处卸去货物后能顺利返回D处加油?(根据驾驶经验,为保险起见,油箱内余油量应随时不少于10升)
“震灾无情人有情”,玉树地震牵动了全国人民的心,武警某部队接到命令,运送一批救灾物资到灾区,货车在公路A处加满油后,以每小时60千米的速度匀速行驶,前往与A处相距360千米的灾区B处.下表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间关系:
(1)请你用学过的函数中的一种建立y与x之间的函数关系式,说明选择这种函数的理由;(不要求写出自变量的取值范围)
(2)如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到达C处,C的前方12千米的D处有一加油站,货车在D处加油,加油后继续行驶,到达灾区B处卸去货物后返回D处加油,发现油箱内余油16升.请你算出货车第一次在D处加了多少升油?
行驶时间x(时) | 0 | 1 | 2 | 3 | 4 |
余油量y(升) | 150 | 120 | 90 | 60 | 30 |
(2)如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到达C处,C的前方12千米的D处有一加油站,货车在D处加油,加油后继续行驶,到达灾区B处卸去货物后返回D处加油,发现油箱内余油16升.请你算出货车第一次在D处加了多少升油?