题目内容

【题目】阅读材料.

我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?

在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第nn个圆圈中数的和为n+n+n+…+n,即n2.这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2

(规律探究)

将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为   ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=   ,因此,12+22+32+…+n2=   

(解决问题)

根据以上发现,计算:的结果为   

【答案】2n+1,;7.

【解析】

根据图1和图2,归纳总结得到一般性规律,利用此规律确定出所求即可.

解:【规律探究】

将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均2n+1;由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=;因此,12+22+32+…+n2=

【解决问题】

根据以上发现,计算:的结果为7.

故答案为:2n+1;.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网