题目内容
【题目】如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为( )
A. B. 2 C. D.
【答案】C
【解析】如图连接OC、OD,CD与AB交于点F.
∵AB是直径,
∴∠ACB=90°,
∵CD平分∠ACB,
∴ ,
∴OD⊥AB,
∵DE是切⊙O切线,
∴DE⊥OD,
∴AB∥DE,∵∠E=75°,
∴∠ABC=∠E=75°,∠CAB=15°,
∴∠CFB=∠CAB+∠ACF=15°+45°=60°,
∴∠OFD=∠CFB=60°,
在RT△OFD中,∵∠DOF=90°,OD=2,∠ODF=30°,
∴OF=ODtan30°=,DF=2OF=,
∵OD=OC,
∴∠ODC=∠OCD=30°,
∵∠COB=∠CAB+∠ACO=30°,
∴∠FOC=∠FCO,
∴CF=FO=,
∴CD=CF+DF=,
故选C.
练习册系列答案
相关题目
【题目】均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷实验,结果统计如下:
朝下的数字 | 1 | 2 | 3 | 4 |
出现的次数 | 16 | 20 | 14 | 10 |
(1)计算上述实验中“4”朝下的频率.
(2)“根据实验结果,投掷一次正四面体,出现2朝下的概率是”的说法正确吗?请说明理由.