题目内容
如图所示,边长为2的等边三角形OBA的顶点A在x轴的正半轴上,B点位于第一象限.将△OAB绕点O顺时针旋转30°后,得到△OB′A′,点A′恰好落在双曲线y=
(1)在图中画出△OB′A′;
(2)求双曲线y=

(3)等边三角形OB′A′绕着点O继续按顺时针方向旋转______度后,A′点再次落在双曲线上?( 直接将答案填写在横线上即可,不需要说明理由 )

【答案】分析:(1)旋转中心为O点,旋转角为30°,旋转方向为顺时针,由此画出图形;
(2)根据三角形的轴对称性及所画图形,由勾股定理求OM,MA′,确定A′的坐标,可求双曲线解析式;
(3)双曲线y=-
关于直线y=-x轴对称,可求A′(
,-1)点关于直线y=-x的轴对称点,再判断这个点是否在双曲线上.
解答:
解:(1)画图如图所示;
(2)设A′B′与x轴交于点M,
由题意可知:OA=2,∠MOA′=30°
∴AM=1,
由勾股定理得:OM=
,
∴A′点的坐标为(
,-1),
∵A′恰好落在双曲线y=
(k≠0)上,
∴k=-
∴双曲线的解析式为:y=-
;
(3)30.
点评:本题考查了反比例函数的综合运用,旋转的性质.关键是通过坐标系里的图形旋转,特殊三角形的性质,求点的坐标,确定双曲线的解析式.
(2)根据三角形的轴对称性及所画图形,由勾股定理求OM,MA′,确定A′的坐标,可求双曲线解析式;
(3)双曲线y=-


解答:

(2)设A′B′与x轴交于点M,
由题意可知:OA=2,∠MOA′=30°
∴AM=1,
由勾股定理得:OM=

∴A′点的坐标为(

∵A′恰好落在双曲线y=

∴k=-

∴双曲线的解析式为:y=-

(3)30.
点评:本题考查了反比例函数的综合运用,旋转的性质.关键是通过坐标系里的图形旋转,特殊三角形的性质,求点的坐标,确定双曲线的解析式.

练习册系列答案
相关题目

A、
| ||||
B、
| ||||
C、
| ||||
D、
|