题目内容
【题目】如图,ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的个数有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【解析】
试题分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到SABCD=ABAC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB<OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.
解:∵四边形ABCD是平行四边形,
∴∠ABC=∠ADC=60°,∠BAD=120°,
∵AE平分∠BAD,
∴∠BAE=∠EAD=60°
∴△ABE是等边三角形,
∴AE=AB=BE,
∵AB=BC,
∴AE=BC,
∴∠BAC=90°,
∴∠CAD=30°,故①正确;
∵AC⊥AB,
∴SABCD=ABAC,故②正确,
∵AB=BC,OB=BD,且BD>BC,
∴AB<OB,故③错误;
∵CE=BE,CO=OA,
∴OE=AB,
∴OE=BC,故④正确.
故选:C.
练习册系列答案
相关题目