题目内容

如图,AB,CD是⊙O的两条弦,AB=CD,OE⊥AB于E,OF⊥CD于F,求证:OE=OF.

证明:∵OE⊥AB于E,OF⊥CD于F,
∴OE和OF是圆的两条弦的弦心距,
∵AB,CD是⊙O的两条弦,AB=CD,
∴OE=OF.
分析:利用同圆或等圆中相等的弦所对的弧、弦心距相等证明即可.
点评:本题考查了垂径定理及勾股定理的知识,解题的关键是正确的将证明弦心距转化为证明两弦相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网