题目内容
【题目】如图所示,四边形是正方形, 是延长线上一点.直角三角尺的一条直角边经过点,且直角顶点在边上滑动(点不与点重合),另一直角边与的平分线相交于点.
(1)求证: ;
(2)如图(1),当点在边的中点位置时,猜想与的数量关系,并证明你的猜想;
(3)如图(2),当点在边(除两端点)上的任意位置时,猜想此时与有怎样的数量关系,并证明你的猜想.
【答案】(1)详见解析;(2),理由详见解析;(3),理由详见解析
【解析】
(1)根据,等量代换即可证明;(2)DE=EF,连接NE,在DA边上截取DN=EB,证出△DNE≌△EBF即可得出答案;(3)在边上截取,连接,证出即可得出答案.
(1)证明:∵,
∴,
∴;
(2) 理由如下:
如图,取的中点,连接,
∵四边形为正方形,
∴ ,
∵分别为中点
∴,
∴
又∵
∴
∴,
又∵,平分
∴.
∴
在和中
,
∴
(3) .理由如下:
如图,在边上截取,连接,
∵四边形是正方形, ,
∴,
∴为等腰直角三角形,
∵
∴,
∵平分, ,
∴,
∴,
在和中
∴,
∴.
练习册系列答案
相关题目
【题目】某市举行知识大赛,校、校各派出名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
(1)根据图示填写下表:
平均数 | 中位数 | 众数 | |
校选手成绩 | |||
校选手成绩 | 80 |
(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.