题目内容
【题目】如图①,正方形ABCD,点E,F分别在AB,CD上,DG⊥EF于点 H.
(1)求证:DG=EF;
(2)在图①的基础上连接AH,如图②,若 AH=AD,试确定DF与 CG的数量关系,并说明理由;
(3)在(2)的条件下,作∠FEK=45°,点 K在 BC边上,如图③,若AE=KG=2,求EK的长.
【答案】(1)证明见解析;(2)DF=2GC;(3).
【解析】
(1)过点F作FM⊥AB于点M,由题意可证MF=BC=CD,∠BEF=∠DFE=∠DGC,即可证△EFM≌△GDC,即可得EF=DG;
(2)过点A作AM⊥DG于点M,过点C作CN⊥DG于点N.由题意可证△ADM≌△DCN,可得DM=CN=DH,由题意可证△DFH∽△DGC,可得
=2,即可得DF=2CG
(3)过点F作FM⊥AB,连接MK,FK,由题意可证Rt△EMF≌Rt△GCD,可求EM=GC,由AM=DF=2GC,可得GC=EM=2,则可证点E,点F,点K,点M四点共圆,可得∠EMF=∠EKF=90°,可证△BEK≌△CKF,可得CK=BE=4,BM=2=BK,根据勾股定理可求EK的长.
(1)证明:过点F作FM⊥AB于点M,
∵四边形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,AB∥CD
∵FM⊥AB,∠B=∠C=90°
∴四边形BCFM是矩形
∴MF=BC
即MF=CD
∵EF⊥DG,
∠C=90°
∴∠CDG+∠DGC=90°,∠CDG+∠DFE=90°
∴∠DGC=∠DFE
∵AB∥CD
∴∠BEF=∠EFD
∴∠BEF=∠DGC,且MF=CD,∠EMF=∠C=90°
∴△EFM≌△GDC(AAS)
∴EF=GD
(2)DF=2GC
过点A作AM⊥DG于点M,过点C作CN⊥DG于点N.
∵CN⊥DG,∠ADC=90°
∴∠ADG+∠GDC=90°,∠GDC+∠NCD=90°
∴∠ADG=∠DCN
∵AD=AH,AM⊥DG
∴MD=MH=DH,
∵AD=CD,∠AMD=∠CND=90°,∠ADG=∠NCD
∴△ADM≌△DCN(AAS)
∴MD=NC
即DH=2NC
∵∠DGC=∠DFE,∠DHF=∠DCG=90°
∴△DFH∽△DGC
∴=2
∴DF=2GC
(3)如图:过点F作FM⊥AB,连接MK,FK,
∵FM⊥AB,∠B=∠C=∠BAD=∠ADC=90°
∴四边形ADFM是矩形,四边形BCFM是矩形
∴DF=AM,AD=MF=BC=CD,
∵EF=DG,MF=CD
∴Rt△EMF≌Rt△GCD(HL)
∴GC=EM
∵DF=2GC
∴AM=2GC=2EM
∴AE=EM=2=CG
∴DF=4=CK
∴BK=BM
∴∠BMK=∠BKM=45°
∴∠FMK=45°
∵∠FMK=∠FEK=45°
∴点E,点F,点K,点M四点共圆
∴∠EMF=∠EKF=90°
∴∠FEK=∠EFK=45°
∴EK=FK,
∵∠BEK+∠EKB=90°,∠FKC+∠EKB=90°
∴∠FKC=∠BEK,且∠B=∠C=90°,EK=FK
∴△BEK≌△CKF(AAS)
∴CK=BE=4
∴BM=2=BK
∴EK=.
![](http://thumb.zyjl.cn/images/loading.gif)