题目内容

【题目】如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有(  )
A.①②③
B.①②④
C.①③④
D.①②③④

【答案】D
【解析】

解答:解:①连接FC,延长HF交AD于点L,

∵BD为正方形ABCD的对角线,

∴∠ADB=∠CDF=45°.

∵AD=CD,DF=DF,

∴△ADF≌△CDF.

∴FC=AF,∠ECF=∠DAF.

∵∠ALH+∠LAF=90°,

∴∠LHC+∠DAF=90°.

∵∠ECF=∠DAF,

∴∠FHC=∠FCH,

∴FH=FC.

∴FH=AF.

②∵FH⊥AE,FH=AF,

∴∠HAE=45°.

③连接AC交BD于点O,可知:BD=2OA,

∵∠AFO+∠GFH=∠GHF+∠GFH,

∴∠AFO=∠GHF.

∵AF=HF,∠AOF=∠FGH=90°,

∴△AOF≌△FGH.

∴OA=GF.

∵BD=2OA,

∴BD=2FG.

④延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,

根据△MEC≌△MIC,可得:CE=IM,

同理,可得:AL=HE,

∴HE+HC+EC=AL+LI+IM=AM=8.

∴△CEM的周长为8,为定值.

故(1)(2)(3)(4)结论都正确.

故选D.

分析:①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;

②由FH⊥AE,AF=FH,可得:∠HAE=45°;

③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;(4)作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CI=IM,故△CEM的周长为边AM的长,为定值

解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网