题目内容

【题目】韦达定理:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2x1+x2=﹣ , x1x2=阅读下面应用韦达定理的过程:

若一元二次方程﹣2x2+4x+1=0的两根分别为x1、x2x12+x22的值.

解:该一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0

由韦达定理可得,x1+x2=﹣=﹣=2,x1x2===﹣

x12+x22=(x1+x22﹣2x1x2

=22﹣2×(﹣

=5

然后解答下列问题:

(1)设一元二次方程2x2+3x﹣1=0的两根分别为x1,x2不解方程,求x12+x22的值;

(2)若关于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的两根分别为α,β,且α22=4,求k的值.

【答案】(1)x12+x22=;(2)k的值为﹣1.

【解析】

(1)先根据根与系数的关系得到x1+x2=﹣, x1x2=﹣,再利用完全平方公式变形得到x12+x22=(x1+x22-2x1x2,然后利用整体代入的方法计算即可;
(2)根据一元二次方程(k-1)x2+(k2-1)x+(k-1)2=0的两根分别为α,β,求出两根之积和两根之和的关于k的表达式,再将α22=4变形,将表达式代入变形后的等式,解方程即可.

解:(1)∵一元二次方程的△=b2﹣4ac=32﹣4×2×(﹣1)=17>0,

由根与系数的关系得:x1+x2=﹣, x1x2=﹣

x12+x22=(x1+x22﹣2x1x2==

(2)由根与系数的关系知:=﹣k﹣1,=k﹣1,

α22=(α+β)2﹣2αβ=(k+1)2﹣2(k﹣1)=k2+3

k2+3=4,

k=±1,

k﹣1≠0

k≠1,

代入原方程:﹣2x2+4=0,

=32>0,

成立,

k的值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网