题目内容

任意画三条直线,交点的个数是


  1. A.
    1
  2. B.
    1或3
  3. C.
    0或1或2或3
  4. D.
    不能确定
C
分析:在平面上任意画三条直线,相交的情况有四种可能.①三直线平行;②三条直线相交于一点;③两直线平行被第三直线所截;④两直线相交,又被第三直线所截.故可得出答案.
解答:任意画三条直线,相交的情况有四种可能:
1、三直线平行,没有交点;
2、三条直线相交于同一点,一个交点;
3、两直线平行被第三直线所截,得到两个交点;
4、两直线相交得到一个交点,又被第三直线所截,共三个交点.
故选C.
点评:本题考查直线的相交情况,要注意分情况讨论,要细心,查找时要不重不漏.
练习册系列答案
相关题目
精英家教网九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:
 
,∴m=
 
;已知点B(-2,n)在直线y=2x-1上,求n的方法是:
 
,∴n=
 

问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先
 
,再由已知条件可得
 
.解得:
 
.∴满足已知条件的一次函数的解析式为:
 
.这个一次函数的图象与两坐标轴的交点坐标为:
 
,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,
 
的方法,叫做待定系数法.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网