题目内容
14、解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3.
参考阅读材料,解答下列问题:
(1)方程|x+3|=4的解为
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|+|x+4|≤a对任意的x都成立,求a的取值范围.
参考阅读材料,解答下列问题:
(1)方程|x+3|=4的解为
1和-7
.(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|+|x+4|≤a对任意的x都成立,求a的取值范围.
分析:(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;
(2)不等式|x-3|+|x+4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;
(3)|x-3|+|x+4|≤a对任意的x都成立,即求到3与-4两点距离的和最小的数值.
(2)不等式|x-3|+|x+4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;
(3)|x-3|+|x+4|≤a对任意的x都成立,即求到3与-4两点距离的和最小的数值.
解答:解:(1)方程|x+3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.
故解是1和-7;
(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x的值.
在数轴上,即可求得:x≥4或x≤-5.
(3)|x-3|+|x+4|即表示x的点到数轴上与3和-4的距离之和,
当表示对应x的点在数轴上3与-4之间时,距离的和最小,是7.
故a≤7.
故解是1和-7;
(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x的值.
在数轴上,即可求得:x≥4或x≤-5.
(3)|x-3|+|x+4|即表示x的点到数轴上与3和-4的距离之和,
当表示对应x的点在数轴上3与-4之间时,距离的和最小,是7.
故a≤7.
点评:正确理解题中叙述的题目的意义是解决本题的关键,本题主要考查了绝对值的意义,就是表示距离.
练习册系列答案
相关题目