题目内容
【题目】如图,均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下
:
朝下数字 | 1 | 2 | 3 | 4 |
出现的次数 | 16 | 20 | 14 | 10 |
(1)计算上述试验中“4朝下”的频率是多少?
(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是 .”的说法正确吗?为什么?
(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.
【答案】
(1)
“4朝下”的频率: ;…
故答案为: .
(2)
这种说法是错误的.在60次试验中,“2朝下”的频率为 .
并不能说明“2朝下”这一事件发生的概率为 .只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.
(3)
随机投掷正四面体两次,所有可能出现的结果如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | (3,2) | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
总共有16种结果,每种结果出现的可能性相同,而两次朝下数字之和大于4的结果有10种.
∴P(朝下数字之和大于4)=
【解析】本题主要考查列表法与树状图法求概率,以及频率的意义,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.(1)先由频率=频数÷试验次数算出频率;(2)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率.(3)列表列举出所有的可能的结果,然后利用概率公式解答即可.
【考点精析】掌握用频率估计概率是解答本题的根本,需要知道在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率.
练习册系列答案
相关题目